Corrigendum: Conditional Knockout of Cav2.1 Disrupts the Accuracy of Spatial Recognition of CA1 Place Cells and Spatial/Contextual Recognition Behavior
نویسندگان
چکیده
Hippocampal pyramidal neurons play an essential role in processing spatial information as implicated with its place-dependent firing. Although, previous slice physiology studies have reported that voltage gated calcium channels contribute to spike shapes and corresponding firing rate in the hippocampus, the roles of P/Q type calcium channels (Cav2.1) underlying neural activity in behaving mice have not been well-investigated. To determine physiological and behavioral roles of Cav2.1, we conducted place cell recordings in CA1 and hippocampus dependent learning/memory tasks using mice lacking Cav2.1 in hippocampal pyramidal neurons under CamK2α-Cre recombinase expression. Results suggested that impairments shown in behavioral tasks requiring spatial and contextual information processing were statistically significant while general neurological behaviors did not differ between groups. In particular, deficits were more profound in recognition than in acquisition. Furthermore, place cell recordings also revealed that the ability to recollect spatial representation on re-visit in the conditional knockout was also altered in terms of the cue recognition while the capability of a place cell to encode a place was intact compared to the control group. Interestingly, CA1 pyramidal neurons of conditional knockout mice showed reduced burst frequency as well as abnormal temporal patterns of burst spiking. These results provide potential evidence that Cav2.1 in hippocampal pyramidal cells modulates temporal integration of bursts, which, in turn, might influence the recognition of place field and consequently disrupt spatial recognition ability.
منابع مشابه
Ethanol impairs memory by reducing the synaptic connection of the hippocampal spatial neurons
Background and Objective: Ethanol has undesirable effects on memory and synaptic communication. However, its impact on the learned spatial memory is unclear. We investigated the damaging effects of ethanol on place neurons of rat’s hippocampal CA1.Materials and Methods: Sixty four male Wistar rats (250 g) were administered high (1-8 g/kg) or low (0.05-0.1 g/kg) doses of ethanol intraperit...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملEffects of Digital Elevation Model (DEM) Spatial Resolution on the Recognition of Physiography Characteristics of the Basin )A Case Study of Shahrchai Watershed)
In recent years with developing geographic information systems tools, modeling and simulating methods has been developed quickly. Availability of accurate base maps is the basis of the cell sizes determination and preparing digital hydrologic models. Removing errors and minimizing of uncertainty factors in the digital models play the main role in improving the accuracy of the maps. The main pur...
متن کاملIncreased Size and Stability of CA1 and CA3 Place Fields in HCN1 Knockout Mice
Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called "place fields." To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN...
متن کاملAssessment of the effect of nitric oxide within hippocampal CA1 area on spatial learning and memory in morphine dependent rats
Introduction: There are evidences showing the role of nitric oxide in the opiate reward properties. The role of nitric oxide signaling pathway as an intracellular mechanism on augmentation of long term potentiation in hippocampal CA1 area of rats is also confirmed. It has been also reported that oral morphine dependence facilitates formation of spatial learning and memory via activation of N...
متن کامل